Technische Richtlinien

für Erzeugungseinheiten und -anlagen

TEIL 4 (TR 4)

Anforderungen an Modellierung und Validierung von Simulationsmodellen der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen

Revision 08 Stand 01.03.2016

Herausgeber: FGW e.V. Fördergesellschaft Windenergie und andere Erneuerbare Energien

Anforderungen an Modellierung und Validierung von Simulationsmodellen der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen

Stand 01.03.2016

Herausgeber

FGW e.V.

Fördergesellschaft Windenergie und andere Erneuerbare Energien

Oranienburger Straße 45 10117 Berlin

Tel. +49 (0)30 30101505-0 Fax +49 (0) 30 30101505-1

E-Mail info@wind-fgw.de
Internet www.wind-fgw.de

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliothek; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrecht zugelassen ist, bedarf der vorherigen Zustimmung des Herausgebers. Dies gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Aus Gründen der einfacheren Lesbarkeit wird auf die geschlechtsneutrale Differenzierung verzichtet. Entsprechende Begriffe gelten im Sinne der Gleichbehandlung grundsätzlich für beide Geschlechter.

Folgende Teile der Technischen Richtlinien der FGW sind erhältlich:

- Teil 1: Bestimmung der Schallemissionswerte
- Teil 2: Bestimmung von Leistungskurven und standardisierten Energieerträgen
- **Teil 3:** Bestimmung der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen am Mittel- Hoch- und Höchstspannungsnetz
- **Teil 4:** Anforderungen an Modellierung und Validierung von Simulationsmodellen der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen
- Teil 5: Bestimmung und Anwendung des Referenzertrages
- Teil 6: Bestimmung von Windpotenzial und Energieerträgen
- Teil 7: Betrieb und Instandhaltung von Kraftwerken für erneuerbare Energien

Rubrik A: Allgemeiner Teil

Rubrik B3: Fachspezifische Anwendungserläuterung zur Überwachung und Überprüfung von Gründungs- und Tragstrukturen (GuT) bei Windenergieanlagen

Rubrik D2: Zustands-Ereignis-Ursachen-Schlüssel für Erzeugungseinheiten (ZEUS)

Rubrik D3: Globales Service Protokoll (GSP)

Rubrik D3 – Anhang A: XML-Schemadokumentation

- **Teil 8:** Zertifizierung der elektrischen Eigenschaften von Erzeugungseinheiten und -anlagen am Mittel- Hoch- und Höchstspannungsnetz
- **Teil 9:** Bestimmung der Hochfrequenten Emission von regenerativen Energieerzeugungseinheiten

Vorwort

Vorwort

Die Technischen Richtlinien der FGW dienen dem Ziel, Mess- und Prüfverfahren anzugeben, mit denen verlässliche und vergleichbare Daten über Erzeugungseinheiten (EZE) und Erzeugungsanlagen (EZA) nach dem neuesten Stand der Technik ermittelt werden können.

Die vorliegende Richtlinie beschreibt Anforderungen an die Modellierung und Validierung von Simulationsmodellen von EZE und EZA zur Beschreibung der elektrischen Eigenschaften am Netz.

Die Beschreibung der Verfahren zur Validierung und Modellierung des elektrischen Verhaltens von EZE und EZA entsprechend dieser Technischen Richtlinie dient dem Nachweis, dass die Simulationsmodelle ausreichend genau das elektrische Verhalten der EZE und EZA hinsichtlich der in der TR 3 aufgeführten Messungen abbilden können.

Hinweis: Kursive Textstellen müssen übergreifend in der TR 8 geklärt werden und können entfallen, sobald sie dort aufgenommen werden.

Inhaltsverzeichnis

Ver	wen	lete Abkürzungen	vii
Syn	ıbole	und Einheiten	X
F	orme	lzeichen	X
I	ndize	s	xi
S	chrei	bweisen	xii
K	Kennz	eichnungen	xii
Beg	riffe	und Definitionen	xiv
1 A	Allge	meines	1
1.1	An	wendungsbereich	1
1.2	No	rmative Verweisungen	1
2 Z	Zielse	etzung der Richtlinie Modellierung/Validierung	2
2.1	Mo	dell der Einheit für die Zertifizierung	2
2.2		dell der Anlage für die Zertifizierung	
2.3		thodik und standardisiertes Modell für Netzberechnungen	
2.4	Bei	rechnungsmethoden/Gültigkeit der Modelle	3
3 E	EZE:	Umfang der Modellierung und Validierung	7
3.1	Wi	rkleistungsabgabe	7
		Wirkleistung	
		Leistungsbegrenzter Betrieb durch den Netzbetreiber (Sollwertvorgabe)	
		Leistungsbegrenzung bei Netzfrequenzerhöhung	
3.2		ndleistungsbereitstellung	
3		PQ-Kennlinie	
		Blindleistung nach Sollwertvorgabe	
		Q-Übergangsfunktion	
3.3	Vei	halten bei Störungen im Netz	8
3.4		llererkennung	8
3.5	Gü	ltigkeitsbereich des Modells	8
3.6		delldokumentation	
4 E	EZE:	Grundlagen für die Modellbildung	9
4.1	Erf	orderliche Informationen aus Prüfberichten und Herstellererklärungen	9
4.2	Da	rstellung primäre Energiewandlung (Wind, Solar, Biomasse, Wasser, othermie)	
4		Darstellung primäre Energiewandlung Wind	
		Darstellung primäre Energiewandlung PV	
4.3	Da	rstellung sekundäre Energiewandlung (Wind, Solar, Biomasse, Wasser,	11

	4.3.1	Darstellung sekundäre Energiewandlung Wind (ASM, ASM-Schlupfregelung, DASM, ASM/SM+Vollumrichter, SM)	11
	4.3.1.1	Direkt gekoppelte Asynchronmaschine mit Kurzschlussläufer	11
	4.3.1.2	Direkt gekoppelte Asynchronmaschine mit Schlupfregelung	12
	4.3.1.3	Doppeltgespeiste Asynchronmaschine mit Frequenzumrichter im Läuferkreis	12
	4.3.1.4	Synchron-/Asynchronmaschine mit Frequenzumrichter	13
	4.3.1.5	Direkte Netzkopplung einer Synchronmaschine	14
	4.3.2	Photovoltaik-Erzeugungseinheiten mit Wechselrichter	14
4.4	Zus	atzkomponenten (Transformator, passive Kompensation, FACTS)	14
	4.4.1	Transformator	14
	4.4.2	Kabel	15
	4.4.3	Passive Kompensation	16
	4.4.4	Aktive Kompensation	16
4.5	Ant	orderungen für Standardmodelle (siehe Anhang B)	16
5	Validi	erung von Simulationsmodellen (EZE)	17
5.1	Ver	fahren	17
5.2		ebnis	
5.3	_	vertung	
		Bewertung für Typ 2 EZE	
		Bewertung für Typ 1 EZE	
5.4	Mo	dellvalidierung für nach TR 3 typgeprüfte EZE des Typ 1	21
	5.4.1	Zusätzliches notwendiges Bewertungskriterium der Modellgüte in Bezug auf die LVRT-Stabilität	21
	5.4.2	Übertragung von Modellen auf nicht nach TR 3 typgeprüfte EZE des Typ 1	22
5.5	We	itergehende Plausibilitätsprüfungen	22
	5.5.1	Plausibilitätsprüfung EZE	22
	5.5.2	Tauglichkeitsnachweis von EZE-Modellen für die Verwendung im Rahmen der Anlagenberechnung/-zertifizierung	23
5.6	Nac	chweis der Kraftwerkseigenschaften: Teststandort	23
5.7	' Kra	ftwerkseigenschaften: Test und Messung	24
	5.7.1	Tests	24
	5.7.2	Sollwertvorgaben	24
	5.7.3	Abtastrate, Genauigkeit, Anzahl der Phasen bei Strom & Spannungsmessung:	24
	5.7.4	Messzeitraum	24
	5.7.5	Vergleichszeitraum für die Validierung	24
5.8	Kra	ftwerkseigenschaften: Vergleichsverfahren	25
5.9	Üb	ertragbarkeit der Validierung von EZE-Modellen	25
	5.9.1	Vereinfachter Nachweis der Validierung des EZE-Modells	26

	5.9.2	Übertragung auf andere EZE	26
	5.9.3	Übertragung auf andere Netzverhältnisse	27
	5.9.4	Übertragung in eine andere Simulationssprache	27
	5.9.5	Übertragung in eine andere Abtastrate	27
	5.9.6	Übertragung von Modellteilen aus dem Peripherie-Teil	28
6	EZA:	Grundlagen für die Modellierung	29
6.	1 Ko	mponenten zur EZA-Modellierung	29
	6.1.1	EZE-Modell	29
	6.1.2	EZA-Transformatoren	29
	6.1.3	Kabel	29
	6.1.4	Kompensationsanlagen	29
	6.1.5	Externes Netz	30
	6.1.6	EZA-Regelung	30
6.	2 EZ	A-Regler	30
	6.2.1	Umfang und Dokumentation des Modells des EZA-Reglers	30
	6.2.2	Eingänge des Modells des EZA-Reglers	30
	6.2.3	Ausgänge des Modells des EZA-Regler	31
	6.2.4	Parameter des Modells des EZA-Reglers	31
	6.2.5	Regelfunktionen des EZA-Modells	31
6.	3 An	forderungen an die Validierung und Plausibilisierung des EZA-Reglers	31
6.		forderungen an die Validierung für einen vereinfachten Nachweis für EZA EZA-Regler	31
	6.4.1	Anforderungen an die stationäre Abweichung zwischen Simulation und Messung des EZA-Reglers für Wirk- und Blindleistung	32
	6.4.2	Anforderungen an die Regeldynamik des Modells des EZA-Reglers für Wirk- und Blindleistung	33
	6.4.3	Anforderungen an die stationäre Genauigkeit der Sollwerte des EZA- Reglers an die EZE bzw. für unterlagerte EZA	
6.	5 Scł	nutzeinrichtungen der EZA	
6.		spielkonfigurationen von EZA	
		derliche Nachweise der EZA	
7.		rkleistungsabgabe	
/ •.		Wirkleistung	
		Leistungsbegrenzter Betrieb durch den Netzbetreiber (Sollwertvorgabe)	
		Leistungsbegrenzung bei Netzfrequenzerhöhung	
7.		ndleistungsbereitstellung	
/ •·		PQ-Diagramm	
		Blindleistung nach Sollwertvorgabe	
		Q-Übergangsfunktion	
		Q(U)-Regelung	
	, ·	₹/-/OO	

7.3 Ver	halten bei Störungen im Netz37
7.4 Pla	usibilitätsprüfung der EZA37
Literatu	rverzeichnis38
Inhaltsv	erzeichnis Anhänge40
Anhang A	Validierungsbericht (normativ)45
Anhang B	Beispielmodelle und Anforderungen an Standardmodelle47
Anhang C	Anmerkungen zur Simulation und Validierung6
Anhang D	(Informativ): Mindestanforderungen an die Modelldokumentation und Vorschlag zur Gliederung (Anwendungsbeschreibung für den Zertifizierer)64
Anhang E	(Informativ): Plausibilisierung der EZE-Modelle hinsichtlich EZA- Simulationstauglichkeit66
Anhang F	Bestimmung des Beginns von transienten Bereichen
Anhang G	Modellierung, Validierung und Konformitätsnachweis netzgekoppelter Stromerzeugungsanlagen mit Synchrongenerator69

Verwendete Abkürzungen

AC Wechselstrom bzw. Wechselspannung AC (Alternating Current)

ADC Analog-nach-Digital Converter

ASM Asynchronmaschine

AVR Automatic Voltage Regulator (Spannungsregler)

AWE Automatische Wieder-Einschaltung bei Freileitungen nach Netzfehlern

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.

BDEW- BDEW Mittelspannungsrichtlinie "Erzeugungsanlagen am Mittelspan-

MSR nungsnetz" [1]

BHKW Blockheizkraftwerk: EZE mit Verbrennungsmotor, bei dem neben der

elektrischen auch die thermische Energie genutzt wird.

BNetzA Bundesnetzagentur

CISPR Comité International Spécial Des Perturbations Radioélectriques

DASM Doppeltgespeiste Asynchronmaschine

DC Direct Current: Gleichstrom

DIN Deutsches Institut für Normung e.V.

DKW Dampfkraftwerk
DT Dampfturbine
EB Eigenbedarf

EEG Erneuerbare-Energien-Gesetz
EMC Electromagnetic Compatibility

EMV Elektromagnetische Verträglichkeit

EN Europäische Norm

END Ersatznetzdarstellung

Erzeugungsanlage: Eine oder mehrere EZE einschließlich aller zum An-EZA schluss und Betrieb erforderlichen elektrischen Einrichtungen, entspre-

chend BDEW-MSR

EZE Erzeugungseinheit, einzelne Einheit zur Erzeugung von elektrischer Ener-

gie, entsprechend BDEW-MSR

EZS Erzeuger-Zählpfeilsystem

FACTS Flexible Alternating Current Transmission System

FGW e.V. - Fördergesellschaft Windenergie und andere Erneuerbare

Energien

FLR Frequenzgeführter Leistungsregler

FNN Forum für Netztechnik/Netzbetrieb im VDE (FNN)
GENSET Kombination von Generator und Antriebseinheit

GT Gasturbine

GuD Gas- und Dampfkraftwerk

HS-Netz HochspannungsnetzHSS-Netz Höchstspannungsnetz

IBN Inbetriebnahme

IEC International Electrotechnical Commission

IGBT Insolated Gate Bipolar Transistors

ISO International Organization for Standardization

LR Leistungsregler

LVRT Low-Voltage-Ride-Through bzw. Durchfahren des Spannungseinbruchs

MOSFET MetalOxide Semiconductor Field-Effect Transistor

Maximum Power Point (Solarmodule werden normalerweise im Punkt der

maximalen Leistungsabgabe betrieben).

MS Mittelspannung

MS-Netz Mittelspannungsnetz

MAE mean absolute error between simulation and measurement [2]

ME mean error between simulation and measurement [2]

MXE maximum error between simulation and measurement [2]

NAP Netzanschlusspunkt: Punkt an dem die Anlage an das Netz des Netzbetrei-

bers angeschlossen ist

NAR Netzanschlussregeln

NB Netzbetreiber

NS Niederspannung

NVP Netzverknüpfungspunkt: Punkt an dem die Anlage an das Netz des Netz-

betreibers angeschlossen ist (Definition gemäß SDL-WindV)

OEL Over-Excitation-Limiter (Übererregungsbegrenzung des AVR)

OS Oberschwingung

PSS Power-System-Stabilizer

Photovoltaikanlage: Die PVA besteht aus Modulen, die in Abhängigkeit von der solaren Einstrahlung DC-Spannung liefern, sowie den Balance of

System (BoS)- Komponenten, zu denen auch der Wechselrichter zählt. Die

Einspeisung erfolgt immer über einen Wechselrichter. Der Wechselrichter

prägt die elektrischen Eigenschaften der PVA ein. Für die Vermessung ist

der Wechselrichter maßgeblich

SDLWindV Verordnung zu Systemdienstleistungen durch Windenergieanlagen

SS Sammelschiene

PVA

STATCOM Static Synchronous Compensator

STBR Stabilitätsreserve der Primärregelung

SVC Static VAR Compensator

TAB Technische Anschlussbedingungen

TC 2007 Transmission Code 2007 [3]

THC Total Harmonic Current Distortion

TR Technische Richtlinie

TR 3 Technische Richtlinie 3 der FGW [4]
TR 8 Technische Richtlinie 8 der FGW [5]

UEL Under-Excitation-Limiter (Untererregungsbegrenzung des AVR)

UW Umspannwerk

VDE FNN Verband der Elektrotechnik Forum Netztechnik/ Netzbetrieb

VDN Verband der Netzbetreiber
VKM Verbrennungskraftmaschinen
VZS Verbraucher-Zählpfeilsystem

WEA Windenergieanlage
WK Wasserkraftwerk
WT Wasserturbine

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e.V.